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ABSTRACT.:We call an n-tuple Qs, . . ., Qy of positive definite nxn real matrices a-conditioned for some a >1
if for the corresponding quadratic forms q;: R"~— R we have q,(x) <ag; (y) for any two vectors x, yeR" of

Euclidean unit length and q,(x)< ag,(x) for all 1<i, j <n and all x € R". An n-tuple is called doublystochastic if

the sum of Q, is the identity matrix and the trace of each Q, is 1. We prove that for any fixed «> 1 the mixed
discriminant of an a-conditioned doubly stochastic n-tuple is n"°®e=N. As a corollary, for any o> 1 fixed in
advance, we obtain a polynomial time algorithm approximating the mixed discriminant of an a-conditioned n-
tuple within a polynomial in n factor.

I. INTRODUCTION AND MAIN RESULTS
(1.1) Mixed discriminants. LetQy, . . ., Qsbenxnreal symmetric matri-ces. The function det (t,Q; + . . . + t,Qp),
where ty, . . ., t, are real variables, is a homogeneous polynomial of degree niinty, . . ., t, and its coefficient

an

(111) D (Ql, ceay Qn) = oty - - Oty det (tlQl +...+ thn)

is called the mixed discriminant of Qy, . . ., Q, (sometimes, the normalizing factor of 1/n! is used). Mixed
discriminants were introduced by A.D. Alexandrov in his work on mixed volumes [Al38], see also [Le93]. They
also have some interesting combinatorial applications, see Chapter V of [BR97].

Mixed discriminants generalize permanents. If the matrices Qq, . . ., Q, are di-agonal, so that

Qi =diag (a1, - - - » ain) fori=1,...,n,

then

(1.1.2) D(Qi...,Qn =perA where A = (ajj)

and
XY"
per A= (i)

oeSy i=1

is the permanent of an n x n matrix A. Here the i-th row of A is the diagonal of Q; and S, is the symmetric group
of all n! permutations of the set {1, ..., n}.

(1.2) Doubly stochastic n-tuples. IfQy, . . . , Qnare positive semidefinite ma-trices then D (Qq, . .., Qn) >0, see
[Le93]. We say that the n-tuple (Qq, . . ., Qp) is doubly stochastic if Qq, . . ., Qn are positive semidefinite,
Q+...+Qn=1land trQi=...=trQ,=1,

where | is the n x n identity matrix and tr Q is the trace of Q. We note that if Qq, . . ., Q, are diagonal then the n-
tuple (Qu, . . ., Qp) is doubly stochastic if and only if the matrix A in (1.1.2) is doubly stochastic, that is, non-
negative and has row and column sums 1.
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In [Ba89] Bapat conjectured what should be the mixed discriminant version of the van der Waerden inequality
for permanents: if (Qy, ..., Qp) is adoubly

stochastic n-tuple then

n!
(121) D (Qll | Qn) 2 nn
where equality holds if and only if
1 —
Q1 =-=Q :nl.

The conjecture was proved by Gurvits [Gu06], see also [Gu08] for a more general result with a simpler proof.

In this paper, we prove that D (Q4, . . ., Q,) remains close to n!/n" =~ e™" if the n-tuple (Qq, . . ., Qy) is doubly
stochastic and well-conditioned.

(1.3) a-conditioned n-tuples. For a symmetric matrixQ, letiyn(Q) denotethe minimum eigenvalue of Q and let
Mvax (Q) denote the maximum eigenvalue of Q. We say that a positive definite matrix Q is a-conditioned for
some o > 1 if

Imax(Q) < odvin(Q).

Equivalently, let g : R" — R be the corresponding quadratic form defined by

q(x) = Qx, X
for

X € Rn,

where -, -

is the standard inner product in Rn. Then Q is a-conditioned if

q(x)< aq(y)
for all

X,Ye€Rn
such that
X=y= ]_’

where - is the standard Euclidean norm in Rn.

We say that an n-tuple (Qs, . . . , Qn) is a-conditioned if each matrix Q; is a-conditioned and
gi(x) < agj (x) forall 1 <i,j<nandall x € R", where g, . . ., g, : R" = R are the corresponding quadratic
forms.

The main result of this paper is the following inequality.

(1.4) Theorem. Let(Qq, . . ., Qn)be ana-conditioned doubly stochasticn-tupleof positive definite n x n matrices.
Then

D(Qi...Q)<n2e™™,

Combining the bound of Theorem 1.4 with (1.2.1), we conclude that for any o > 1, fixed in advance, the mixed
discriminant of an a-conditioned doubly stochastic

n-tuple is within a polynomial in n factor of e ". If we allow o to vary with n then p

as long as a <<\, , the logarithmic order of the mixed discriminant is captured by e ™".
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The estimate of Theorem 1.4 is unlikely to be precise. It can be considered as a (weak) mixed discriminant
extension of the Bregman - Minc inequality for permanents (we discuss the connection in Section 1.7).

(1.5) Scaling. We say that ann-tuple (P4, . . ., Py) ofnxnpositive definitematrices is obtained from an n-tuple (Qq,
., Qn) of nxn positive definite matrices by scaling if for some invertible n X n matrix T and real 1y, . . ., 1> 0,
we have
(1.5.1) Pi=tT "QiT for i=1,...,n,
where T * is the transpose of T . As easily follows from (1.1.1),
(15.2) D(Py,...,Py)=(detT)? "' D(Qu....Qn,
Y
i=1

provided (1.5.1) holds.

This notion of scaling extends the notion of scaling for positive matrices by Sinkhorn [Si64] to n-tuples
of positive definite matrices. Gurvits and Samorodnitsky proved in [GS02] that any n-tuple of nxn positive
definite matrices can be obtained by scaling from a doubly stochastic n-tuple, and, moreover, this can be
achieved in polynomial time, as it reduces to solving a convex optimization problem (the gist of their algorithm
is given by Theorem 2.1 below). More generally, Gurvits and Samorodnitsky discuss when an n-tuple of
positive semidefinite matrices can be scaled to a doubly stochastic n-tuple. As is discussed in [GS02], the
inequality (1.2.1), together with the scaling algorithm, the identity (1.5.2) and the inequality

D(Ql,-.-,Qn)Sl
for doubly stochastic n-tuples (Qi, . . ., Qn), allow one to estimate within a factor of n!/n" =~ ¢ " the mixed
discriminant of any given n-tuple of n x n positive semidefinite matrices in polynomial time.

In this paper, we prove that if a doubly stochastic n-tuple (Py, . . . , Pp) is ob-tained from an a-
conditioned n-tuple of positive definite matrices then the n-tuple (P4, . . ., P,) is o®-conditioned (see Lemma 2.4
below). We also prove the following strengthening of Theorem 1.4.

(1.6) Theorem. Suppose that(Q4, . . ., Qn)is ana-conditionedn-tuple ofnxnpositive definite matrices and suppose
that (P, . . ., Py) is a doubly stochastic n-tuple of positive definite matrices obtained from (Qy, . . ., Qn) by
scaling. Then

D(Py...,P)<n?e ™D,

Together with the scaling algorithm of [GS02] and the inequality (1.2.1), The-

orem 1.6 allows us to approximate in polynomial time the mixed discriminant D (Qq, . . ., Qn) of an o-
conditioned n-tuple (Q, . . ., Q) within a factor of n** .

Note that the value of D (Qy, . . ., Q,) may vary within a factor of a".

(1.7) Connections to the Bregman - Minc inequality. The following inequal-ity for permanents of 0-1 matrices
was conjectured by Minc [Mi63] and proved by Bregman [Br73], see also [Sc78] for a much simplified proof: if

A is an n x n matrix with 0-1 entries and row sums rq, . . ., I, then
n
Y

(1.7.1) per A <(r;)''I..

i=1

The author learned from A. Samorodnitsky [Sa00] the following restatement of (1.7.1), see also [S003].
Suppose that B = (b;; ) is an n x n stochastic matrix (that is, a non-negative matrix with row sums 1) such that

1
1.7.2) 0<by < _forall i,
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fi
and some positive integersry, . .., rh. Then
n 1r
Y (rit) |
(1.7.3) perB <.

=1 "

Indeed, the function B — per B is linear in each row and hence its maximum value on the polyhedron

of stochastic matrices satisfying (1.7.2) is attained at a vertex of the polyhedron, that is, where bjje {0, 1/r;} for

all i, j. Multiplying the i-th row of B by r;, we obtain a 0-1 matrix A with row sumsry, ..., r, and hence (1.7.3)
follows by (1.7.1).

Suppose now that B is a doubly stochastic matrix whose entries do not exceed a/n for some o > 1. Combining
(1.7.3) with the van der Waerden lower bound, we obtain that

(1.7.4) perB=¢e "n°®,

Ideally, we would like to obtain a similar to (1.7.4) estimate for the mixed discrimi-nants D (Qq, . . ., Qy) of
doubly stochastic n-tuples of positive semidefinite matrices satisfying

o
(1.7.5) Mvax (Qi) < nfori=1,...,n.
In Theorem 1.4 such an estimate is obtained under a stronger assumption that the n-tuple (Qy, . .., Q)

in addition to being doubly stochastic is also a-conditioned. This of course implies (1.7.5) but it also prohibits Q;
from having small (in partic-ular, 0) eigenvalues. The question whether a similar to Theorem 1.4 bound can be
proven under the the weaker assumption of (1.7.5) together with the assumption that (Qy, . . ., Qy) is doubly
stochastic remains open.

In Section 2 we collect various preliminaries and in Section 3 we prove Theorems 1.4 and 1.6.

Il. PRELIMINARIES
First, we restate a result of Gurvits and Samorodnitsky [GS02] that is at the heart of their algorithm to estimate
the mixed discriminant. We state it in the particular case of positive definite matrices.

(2.1) Theorem. LetQq, . . ., Qnubenxnpositive definite matrices, letHCR"

be the hyperplane,
H=Xy ..., ) n  x=0

i=1
and let f: H — R be the function
f(Xy, ..., Xy = Indet N Xoi
X
i=1
Then f is strictly convex on H and attains its minimum on H at a unique point (&g, . . ., &). Let S be an n x n,

necessarily invertible, matrix such that
n
X

2.1.1) $'S=e1 Q
i=1
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(such a matrix exists since the matrix in the right hand side of (2.1.1) is positive definite). Let
1i=¢el for i=1,...,n,

let T=S"and let

Bi=1T QT for i=1,...,n.

Then (B4, . . ., By) is a doubly stochastic n-tuple of positive definite matrices.

We will need the following simple observation regarding matrices By, . . ., B, constructed in Theorem 2.1.
(2.2) Lemma. Suppose that for the matricesQy, . .., Qnin Theorem 2.1, we have

Xn

trQi=n.

i=1

Then, for the matrices By, . . ., B, constructed in Theorem 2.1, we have

D®By...,B)>D@Q...,Q.

Proof. We have
(2.21) D(By,...,B,) =(detT)? "' D(Qy...,Qn).
i=1

Now,
(222) "t=exp™ g =1

X
i=1 i=1
and
(2.2.3)  (gem’= det'sllgi =exp {—f(&,...,&)}.
X
i=1
Since (&, . . ., &) is the minimum point of f on H, we have
n
X
(224) f(&,...,&)<f(,...,0)=IndetQ where Q =Q;.
i=1
We observe that Q is a positive definite matrix with eigenvalues, say, A4, . . . , Ay SUch that
n n
X X
Ai=trQ= trQi=n and A, ..., A> 0.
i=1 i=1

Applying the arithmetic - geometric mean inequality, we obtain

59



Concentration of the Mixed Discriminant of Well-Conditioned Matrices.

(2.2.5) detQ=2 - Ay < M, n =1

A

Combining (2.2.1) — (2.2.5), we complete the proof.

(2.3) From symmetric matrices to quadratic forms. As in Section 1.3, withan n x n symmetric matrix Q
we associate the quadratic form q : R" — R. We define the eigenvalues, the trace, and the determinant of q as

those of Q. Consequently, we define the mixed discriminant D (qy, . . . , ) Of quadratic forms qy, . . ., gn. An n-
tuple of positive semidefinite quadratic forms gy, . . ., g, : R" = R is doubly stochastic if

xn

g(x) = x? forall xeR" and  troi=...=trg,=1.

i=1

An n-tuple of quadratic forms py, ..., p, : R" — R" is obtained from an n-

tuple qu, . . ., On : R"—— R by scaling if for some invertible linear transformation

T R"-— R"andreal 14, . . ., 1> 0 we have

pix) =T10i(Tx) forall xeR" andall i=1,...,n.

One advantage of working with quadratic forms as opposed to matrices is that it is particularly easy to
define the restriction of a quadratic form onto a subspace. We will use the following construction: suppose that

Qs . . ., Qo : R" — R are positive definite quadratic forms and let L € R" be an m-dimensional subspace for
some 1 <m < n. Then L inherits Euclidean structure from R" and we can consider the restrictions gy, ..., gy : L
—— Rofqy ..., Q,onto L. Thus we can define the mixed discriminant D (q, . . . , gm). Note that by choosing
an orthonormal basis in L, we
associate m x m symmetric matrices Q e s Q withqg,...,q . A different
can b b 1 m 1 m
orthonormal basis results in the transformation Q - UQ U for
choice of an b b i i
b b which does not change the
some m x m orthogonal matrix Uandi=1,..., m, b b
b b
mixed discriminant D Q; yooos Qm oo b b
(2.4) Lemma. Letqy, . . ., g.:R"™——Rbe ano-conditionedn-tuple of positivedefinite quadratic forms. Let L < R"
be an m-dimensional subspace, where 1 <m <n, let T : L — R" be a linear transformation such that ker T =
{0} and let 14, . . ., T> O be reals. Let us define quadratic forms ps, ..., pm:L—— R by
pi(x) = 1igi(T x) for xeL and i=1,...,m
Suppose that
Xm
pi(x)= x? forall xelL and trpi=1 for i=1,...,m.
i=1
Then the m-tuple of quadratic forms py, . . ., pm is o®-conditioned.
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This version of Lemma 2.4 and the following proof was suggested by the anony-mous referee. It replaces an
carlier version with a weaker bound of o instead of

2
.
Proof of Lemma 2.4. Let us define a quadratic form g : R" — R by
xm
q(x) = Qi(X) for all xeR".
i=1
Then q(x) is a-conditioned and for each x, y € L such that X =y =1wehave
1=0q(Tx) > hain(@) T x? and  1=q(Ty)<imax (@) Ty?
from which it follows that
Maax (@)
Tx? < Ty?
Avin(Q)
and hence
(2.4.1) Tx? <oaTy? for all X, yeL such that x= y=1
Applying (2.4.1) and using that the form q; is a-conditioned, we obtain
Pi(x) =uai(T X) StOwaxd)  Tx? <on Owax d) Ty?
(2.4.2) <ot (AvinGli) Ty? <d*ugi(Ty)
=a’pi(y) forall X YyelL such that X = y =1,
and hence each form p; is a’-conditioned.
Let us define quadratic formsri : L— R,i=1,...,m, by
ri(x) = qi(T x) for xelL and i=1,...,m.
Then
nx)  <ar(x) forall 1<i,j<m and all xelL.
Therefore,
trri <atrr; forall 1<i,j<m.

Since 1 = tr pj = 1 tr rj, we conclude that 7;

=1/ tr r; and, therefore,

(2.4.3) Ti <o for all 1<i,j<m.

Applying (2.4.3) and using that the n-tuple qs, . . ., d, is a-conditioned, we obtain pi(x) =tigi(T x) < at; §i(T x) <
0.2Tj q; (T X)

(2.4.4)

=a’p; (x)forall  xe L.

Combining (2.4.2) and (2.4.4), we conclude that the m-tuple p, . .

conditioned.

(2.5) Lemma. Letqy, . .
gu(X) = U, x 2,

.2
., Pm is a“-

., gn:R™—Rbe positive semidefinite quadratic formsand suppose that

61



Concentration of the Mixed Discriminant of Well-Conditioned Matrices.

where u € R"and u = 1. Let H = u* be the orthogonal complement to u. Let gbs, . .., gb,; : H— R be the
restrictions of qy, . . ., g,-; onto H. Then

D(Ql: LR Qn) =D (qbll LRI qbn*l) .

Proof. Let us choose an orthonormal basis of R" for which u is the last basis vector and let Qy, . . ., Qn
be the matrices of the forms g, . . ., gy in that basis. Then the only non-zero entry of Q, is 1 in the lower right
corner. Let Qy, ..., Q. be the

- Then
upper left (n — 1) x (n — 1) submatrices of Qy, . . ., Qn1. b b
det (1Q1 + ... +t,Qn) =ty det t,Q1+ ... +t,1Quy
and hence by (1.1.1) we have b b
D(Ql""!Qn):D Qll---infl
b b b b
- matrices of q, ..., q .
On the other hand, Qy, ..., Qn are the b b, n 1

Finally, the last lemma before we embark on the proof of Theorems 1.4 and 1.6.

(2.6) Lemma. Letq:R"-—Rbe ana-conditioned quadratic form such that
trq=1. LetH cR" be a hyperplane and let q be the restriction of ¢ onto H.

Then o
trq >1- b
Proof. Let b n
0<A <...<Ay
be the eigenvalues of g. Then
n
X
=1 and  *n <al,
i=1
from which it follows that
o
ho < n.

As is known, the eigenvalues of q interlace the eigenvalues of g, see, for example,

eigenvalues p peee M — of g we have
Section 1.3 of [Tal2], so for the b 1 n 1
M 1<) n 1 nl b n
<u <.= - <u - <.
Therefore,
n—1 n—1
X X o
trgq= i >0 >1-— n.
b i=1
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i=1

I11. PROOF OF THEOREM1.4 AND THEOREML1.6
Clearly, Theorem 1.6 implies Theorem 1.4, so it suffices to prove the former.
(3.1) Proof of Theorem 1.6. As in Section 2.3, we associate quadratic formswith matrices. We prove the
following statement by inductiononm=1,...,n.

Statement: Letqy, . . ., g.:R™—Rbe ana-conditionedn-tuple of positivedefinite quadratic forms. Let L
< R" be an m-dimensional subspace, 1 <m <n, let T : L —— R" be a linear transformation such that ker T = {0}
and let 1y, . . ., T> O be reals. Let us define quadratic formsp;: L— R,i=1,..., m, by
pi(x) = tai(T X) for XeL and i=1,...,m

and suppose that

m
X
pi(x) = x? forall xeL and trpp =1 for i=1,...,m.
i=1
Then
(3.1.1) D(Py, ..., Pm) <exp —(m-1)+0? o k-
m 1
X

In the case of m = n, we get the desired result.
The statement holds if m = 1 since in that case D(p;) = det p; = 1.

Suppose that m > 1. Let L < R" be an m-dimensional subspace and let the linear transformation T ,

numbers T and the forms p; for i = 1, . . ., m be as above. By Lemma 2.4, the m-tuple p, . . . , pm is o’
conditioned. We write the spectral decomposition

xm

pm(X) = A Uj, X2,

=1

where uy, . . ., Uye L are the unit eigenvectors of py, and Ay, . . ., An> O are the corresponding eigenvalues of pp,.

Since tr pm =1, we have A; +. .. + Ay = 1. Let Lj = ut;, Lj< L, be the orthogonal complement of u; in L. Let
pbj:Lj— R  for i=1,...,m and j=1,...,m
be the restriction of p; onto L .

Using Lemma 2.5, we write

m
X
D(pl:---ypm): Xijl,...,pmfl,Uj,Xz
=1
m
X
m b b
(3.1.2) = 5D Pl P where
=1
X
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=1
Let
Since oj =trpbyy+ ... +1r pbam-1y; for j=1,...,m.
m—1
X
pij (X) = X = pui (%) forall xeL; and ji=1L...,m
b b
i=1
2 conditioned, by Lemma 2.6, we have
and since the form pby; is a - o?
(3.1.3) o <m-2+ m for j=1,...,m.

Let us define

m-—1
i = o pby for i=1,...,m—1and j=1,...,m.
Then by (3.1.3),

PP e T ° 1y (me)j
m—1
b by al m—1
|
(314) < - m—1 + m(m— 1) D Fj vy T
2
<exp -1+ m D Fijy oo Fme1)i
for j=1,...,m.
In addition,
(3.1.5) trrg+. .. +trrgpp=m-—1 for i=1,...,m.
11

Foreachj=1,..., m letwy, ..., Wmm)j:Lj — R be a doubly stochastic (m— 1)-tuple of quadratic forms
obtained from ryj, . . ., rem-1); by scaling as described in Theorem 2.1. From (3.1.5) and Lemma 2.2, we have
(316) D F1j, ooy M) <D Wijy ooy Wime1) for j =1,...,m
Finally, foreachj=1, ..., m, we are going to apply the induction hypothesis
to the (m — 1)-tuple of quadratic forms wy;, . . ., W1y : Lj — R. Since the (m — 1)-tuple is doubly stochastic,
we have
my—1

64



Concentration of the Mixed Discriminant of Well-Conditioned Matrices.

wij (x) = x 2 forall xel; andall j=1,...,m
(3.17) "
and
trw;=1forall i=1,...,m—1 and j=1,...,m.
Since the (m — 1)-tuple Wy; , . . ., W1y is obtained from the (m — 1)-tuple ryj , . . ., rem1y; Dy scaling, there are
invertible linear operators S; : Lj — L; and real numbers g0 fori=1,...,m—1landj=1,..., msuch that
Wi (X) = Mij Tij (Si X) forall X<l
and all i=1,...,m-1 and j=1,...,m

In other words,

p (m — 1) i (m — 1)
W (X) =W rij (S5 X) = pij (Sjx) = pi (S %)
(3.1.8) ij Hij (m — D)7 oj b Oj
- G'—qi (TS;x)  forall x el
J and all i=1,...,m—1 and j=1,...,m
Since for each j =1,...,m, the linear transformation T §; :Lj —— R" ofan

(m — 1)-dimensional subspace Ljc R" has zero kernel, from (3.1.7) and (3.1.8) we can apply the induction
hypothesis to conclude that

(3.1.9)

forj=
Combi
and co

TR G BY <exp “m-2)+o k=2 !
m-1 1
X —
1,...,m
ning (3.1.2) and the inequalities (3.1.4), (3.1.6) and (3.1.9), we obtain (3.1.1)

nclude the induction step.
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